Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
11 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
4 tokens/sec
DeepSeek R1 via Azure Pro
33 tokens/sec
2000 character limit reached

Duality of optimization problems with gauge functions (1712.04690v4)

Published 13 Dec 2017 in math.OC

Abstract: Recently, Yamanaka and Yamashita proposed the so-called positively homogeneous optimization problem, which includes many important problems, such as the absolute-value and the gauge optimizations. They presented a closed form of the dual formulation for the problem, and showed weak duality and the equivalence to the Lagrangian dual under some conditions. In this work, we focus on a special positively homogeneous optimization problem, whose objective function and constraints consist of some gauge and linear functions. We prove not only weak duality but also strong duality. We also study necessary and sufficient optimality conditions associated to the problem. Moreover, we give sufficient conditions under which we can recover a primal solution from a Karush-Kuhn-Tucker point of the dual formulation. Finally, we discuss how to extend the above results to general convex optimization problems by considering the so-called perspective functions.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.