Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Performance guarantees for greedy maximization of non-submodular controllability metrics (1712.04122v2)

Published 12 Dec 2017 in math.OC and cs.SY

Abstract: A key problem in emerging complex cyber-physical networks is the design of information and control topologies, including sensor and actuator selection and communication network design. These problems can be posed as combinatorial set function optimization problems to maximize a dynamic performance metric for the network. Some systems and control metrics feature a property called submodularity, which allows simple greedy algorithms to obtain provably near-optimal topology designs. However, many important metrics lack submodularity and therefore lack provable guarantees for using a greedy optimization approach. Here we show that performance guarantees can be obtained for greedy maximization of certain non-submodular functions of the controllability and observability Gramians. Our results are based on two key quantities: the submodularity ratio, which quantifies how far a set function is from being submodular, and the curvature, which quantifies how far a set function is from being supermodular.

Citations (19)

Summary

We haven't generated a summary for this paper yet.