Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Learning Compressible 360° Video Isomers (1712.04083v1)

Published 12 Dec 2017 in cs.CV

Abstract: Standard video encoders developed for conventional narrow field-of-view video are widely applied to 360{\deg} video as well, with reasonable results. However, while this approach commits arbitrarily to a projection of the spherical frames, we observe that some orientations of a 360{\deg} video, once projected, are more compressible than others. We introduce an approach to predict the sphere rotation that will yield the maximal compression rate. Given video clips in their original encoding, a convolutional neural network learns the association between a clip's visual content and its compressibility at different rotations of a cubemap projection. Given a novel video, our learning-based approach efficiently infers the most compressible direction in one shot, without repeated rendering and compression of the source video. We validate our idea on thousands of video clips and multiple popular video codecs. The results show that this untapped dimension of 360{\deg} compression has substantial potential--"good" rotations are typically 8-10% more compressible than bad ones, and our learning approach can predict them reliably 82% of the time.

Citations (20)

Summary

We haven't generated a summary for this paper yet.