Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
95 tokens/sec
Gemini 2.5 Pro Premium
55 tokens/sec
GPT-5 Medium
20 tokens/sec
GPT-5 High Premium
20 tokens/sec
GPT-4o
98 tokens/sec
DeepSeek R1 via Azure Premium
86 tokens/sec
GPT OSS 120B via Groq Premium
463 tokens/sec
Kimi K2 via Groq Premium
200 tokens/sec
2000 character limit reached

Krylov integrators for Hamiltonian systems (1712.04047v2)

Published 11 Dec 2017 in math.NA

Abstract: We consider Arnoldi like processes to obtain symplectic subspaces for Hamiltonian systems. Large systems are locally approximated by ones living in low dimensional subspaces; we especially consider Krylov subspaces and some extensions. This will be utilized in two ways: solve numerically local small dimensional systems or in a given numerical, e.g. exponential, integrator, use the subspace for approximations of necessary functions. In the former case one can expect an excellent energy preservation. For the latter this is so for linear systems. For some second order exponential integrators we consider these two approaches are shown to be equivalent. In numerical experiments with nonlinear Hamiltonian problems their behaviour seems promising.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)