Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Orbital instability of standing waves for NLS equation on Star Graphs (1712.02773v2)

Published 7 Dec 2017 in math.AP, math-ph, math.DS, math.MP, and nlin.PS

Abstract: We consider a nonlinear Schr\"{o}dinger (NLS) equation with any positive power nonlinearity on a star graph $\Gamma$ ($N$ half-lines glued at the common vertex) with a $\delta$ interaction at the vertex. The strength of the interaction is defined by a fixed value $\alpha \in \mathbb{R}$. In the recent works of Adami {\it et al.}, it was shown that for $\alpha \neq 0$ the NLS equation on $\Gamma$ admits the unique symmetric (with respect to permutation of edges) standing wave and that all other possible standing waves are nonsymmetric. Also, it was proved for $\alpha<0$ that, in the NLS equation with a subcritical power-type nonlinearity, the unique symmetric standing wave is orbitally stable. In this paper, we analyze stability of standing waves for both $\alpha<0$ and $\alpha>0$. By extending the Sturm theory to Schr\"{o}dinger operators on the star graph, we give the explicit count of the Morse and degeneracy indices for each standing wave. For $\alpha<0$, we prove that all nonsymmetric standing waves in the NLS equation with any positive power nonlinearity are orbitally unstable. For $\alpha>0$, we prove the orbital instability of all standing waves.

Summary

We haven't generated a summary for this paper yet.