Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

The Approximate Duality Gap Technique: A Unified Theory of First-Order Methods (1712.02485v3)

Published 7 Dec 2017 in math.OC and cs.DS

Abstract: We present a general technique for the analysis of first-order methods. The technique relies on the construction of a duality gap for an appropriate approximation of the objective function, where the function approximation improves as the algorithm converges. We show that in continuous time enforcement of an invariant that this approximate duality gap decreases at a certain rate exactly recovers a wide range of first-order continuous-time methods. We characterize the discretization errors incurred by different discretization methods, and show how iteration-complexity-optimal methods for various classes of problems cancel out the discretization error. The techniques are illustrated on various classes of problems -- including convex minimization for Lipschitz-continuous objectives, smooth convex minimization, composite minimization, smooth and strongly convex minimization, solving variational inequalities with monotone operators, and convex-concave saddle-point optimization -- and naturally extend to other settings.

Citations (83)

Summary

We haven't generated a summary for this paper yet.