Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Formal Verification of Probabilistic SystemC Models with Statistical Model Checking (1712.02227v1)

Published 4 Dec 2017 in cs.SE

Abstract: Transaction-level modeling with SystemC has been very successful in describing the behavior of embedded systems by providing high-level executable models, in which many of them have inherent probabilistic behaviors, e.g., random data and unreliable components. It thus is crucial to have both quantitative and qualitative analysis of the probabilities of system properties. Such analysis can be conducted by constructing a formal model of the system under verification and using Probabilistic Model Checking (PMC). However, this method is infeasible for large systems, due to the state space explosion. In this article, we demonstrate the successful use of Statistical Model Checking (SMC) to carry out such analysis directly from large SystemC models and allow designers to express a wide range of useful properties. The first contribution of this work is a framework to verify properties expressed in Bounded Linear Temporal Logic (BLTL) for SystemC models with both timed and probabilistic characteristics. Second, the framework allows users to expose a rich set of user-code primitives as atomic propositions in BLTL. Moreover, users can define their own fine-grained time resolution rather than the boundary of clock cycles in the SystemC simulation. The third contribution is an implementation of a statistical model checker. It contains an automatic monitor generation for producing execution traces of the model-under-verification (MUV), the mechanism for automatically instrumenting the MUV, and the interaction with statistical model checking algorithms.

Citations (3)

Summary

We haven't generated a summary for this paper yet.