Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Improved lower bound on generalized Erdos-Ginzburg-Ziv constants (1712.02069v1)

Published 6 Dec 2017 in math.CO

Abstract: If $G$ is a finite Abelian group, define $s_{k}(G)$ to be the minimal $m$ such that a sequence of $m$ elements in $G$ always contains a $k$-element subsequence which sums to zero. Recently Bitz et al. proved that if $n = exp(G)$, then $s_{2n}(C_{n}{r}) > \frac{n}{2}[\frac{5}{4}-O(n{-\frac{3}{2}})]{r}$ and $s_{k n}(C_{n}{r}) > \frac{k n}{4} [1+\frac{1}{e k}-O(\frac{1}{n})]{r}$ for $k > 2$. In this note, we sharpen their general bound by showing that $s_{k n}(C_{n}{r}) > \frac{k n}{4} [1+\frac{(k-1){(k-1)}}{kk}-O(\frac{1}{n})]{r}$ for $k > 2$.

Summary

We haven't generated a summary for this paper yet.