Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Distributed Algorithms Made Secure: A Graph Theoretic Approach (1712.01139v5)

Published 4 Dec 2017 in cs.DS, cs.CR, and cs.DC

Abstract: In the area of distributed graph algorithms a number of network's entities with local views solve some computational task by exchanging messages with their neighbors. Quite unfortunately, an inherent property of most existing distributed algorithms is that throughout the course of their execution, the nodes get to learn not only their own output but rather learn quite a lot on the inputs or outputs of many other entities. This leakage of information might be a major obstacle in settings where the output (or input) of network's individual is a private information. In this paper, we introduce a new framework for \emph{secure distributed graph algorithms} and provide the first \emph{general compiler} that takes any "natural" non-secure distributed algorithm that runs in $r$ rounds, and turns it into a secure algorithm that runs in $\widetilde{O}(r \cdot D \cdot poly(\Delta))$ rounds where $\Delta$ is the maximum degree in the graph and $D$ is its diameter. The security of the compiled algorithm is information-theoretic but holds only against a semi-honest adversary that controls a single node in the network. This compiler is made possible due to a new combinatorial structure called \emph{private neighborhood trees}: a collection of $n$ trees $T(u_1),\ldots,T(u_n)$, one for each vertex $u_i \in V(G)$, such that each tree $T(u_i)$ spans the neighbors of $u_i$ {\em without going through $u_i$}. Intuitively, each tree $T(u_i)$ allows all neighbors of $u_i$ to exchange a \emph{secret} that is hidden from $u_i$, which is the basic graph infrastructure of the compiler. In a $(d,c)$-private neighborhood trees each tree $T(u_i)$ has depth at most $d$ and each edge $e \in G$ appears in at most $c$ different trees. We show a construction of private neighborhood trees with $d=\widetilde{O}(\Delta \cdot D)$ and $c=\widetilde{O}(D)$.

Citations (16)

Summary

We haven't generated a summary for this paper yet.