Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
140 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On Optimal Stochastic Ballistic Transports (1712.00047v1)

Published 30 Nov 2017 in math.AP

Abstract: For a given Lagrangian $L:[0,T]\times M\times M\ast\rightarrow \mathbb{R}_+$ and probability measures $\mu\in\mathcal{P}(M\ast)$, $\nu\in \mathcal{P}(M)$, we introduce the stochastic ballistic transportation problems \begin{align}\tag{$\star$} \underline{B}(\mu,\nu):=\inf\left{\mathbb{E}\left[\langle V,X_0\rangle +\int_0T L(t,X,\beta(t,X))\,dt\right]\middle\rvert V\sim\mu,X_T\sim \nu\right}\\tag{$\star\star$} \overline{B}(\nu,\mu):=\sup\left{\mathbb{E}\left[\langle V,X_T\rangle -\int_0T L(t,X,\beta(t,X))\,dt\right]\middle\rvert V\sim\mu,X_0\sim \nu\right} \end{align} where $X$ is a diffusion process with drift $\beta$. This cost is based on the stochastic optimal transport problem presented by Mikami and the deterministic ballistic transport introduced by Ghoussoub. We obtain a Kantorovich-style duality result that reformulates this problem in terms of solutions to the Hamilton-Jacobi-BeLLMan equation \begin{equation*} \frac{\partial\phi}{\partial t}+\frac{1}{2}\Delta \phi+H(t,x,\nabla\phi)=0, \end{equation*} and show how optimal processes may be thereby attained.

Summary

We haven't generated a summary for this paper yet.