Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Comparing Deep Reinforcement Learning and Evolutionary Methods in Continuous Control (1712.00006v2)

Published 30 Nov 2017 in cs.LG and cs.AI

Abstract: Reinforcement Learning and the Evolutionary Strategy are two major approaches in addressing complicated control problems. Both are strong contenders and have their own devotee communities. Both groups have been very active in developing new advances in their own domain and devising, in recent years, leading-edge techniques to address complex continuous control tasks. Here, in the context of Deep Reinforcement Learning, we formulate a parallelized version of the Proximal Policy Optimization method and a Deep Deterministic Policy Gradient method. Moreover, we conduct a thorough comparison between the state-of-the-art techniques in both camps fro continuous control; evolutionary methods and Deep Reinforcement Learning methods. The results show there is no consistent winner.

Citations (9)

Summary

We haven't generated a summary for this paper yet.