Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Security Risks in Deep Learning Implementations (1711.11008v1)

Published 29 Nov 2017 in cs.CR

Abstract: Advance in deep learning algorithms overshadows their security risk in software implementations. This paper discloses a set of vulnerabilities in popular deep learning frameworks including Caffe, TensorFlow, and Torch. Contrast to the small code size of deep learning models, these deep learning frameworks are complex and contain heavy dependencies on numerous open source packages. This paper considers the risks caused by these vulnerabilities by studying their impact on common deep learning applications such as voice recognition and image classifications. By exploiting these framework implementations, attackers can launch denial-of-service attacks that crash or hang a deep learning application, or control-flow hijacking attacks that cause either system compromise or recognition evasions. The goal of this paper is to draw attention on the software implementations and call for the community effort to improve the security of deep learning frameworks.

Citations (67)

Summary

We haven't generated a summary for this paper yet.