Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Scalable Object Detection for Stylized Objects (1711.09822v2)

Published 27 Nov 2017 in cs.CV, cs.IR, and cs.LG

Abstract: Following recent breakthroughs in convolutional neural networks and monolithic model architectures, state-of-the-art object detection models can reliably and accurately scale into the realm of up to thousands of classes. Things quickly break down, however, when scaling into the tens of thousands, or, eventually, to millions or billions of unique objects. Further, bounding box-trained end-to-end models require extensive training data. Even though - with some tricks using hierarchies - one can sometimes scale up to thousands of classes, the labor requirements for clean image annotations quickly get out of control. In this paper, we present a two-layer object detection method for brand logos and other stylized objects for which prototypical images exist. It can scale to large numbers of unique classes. Our first layer is a CNN from the Single Shot Multibox Detector family of models that learns to propose regions where some stylized object is likely to appear. The contents of a proposed bounding box is then run against an image index that is targeted for the retrieval task at hand. The proposed architecture scales to a large number of object classes, allows to continously add new classes without retraining, and exhibits state-of-the-art quality on a stylized object detection task such as logo recognition.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (5)
  1. Aayush Garg (10 papers)
  2. Thilo Will (1 paper)
  3. William Darling (3 papers)
  4. Willi Richert (1 paper)
  5. Clemens Marschner (1 paper)
Citations (4)

Summary

We haven't generated a summary for this paper yet.