Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
131 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

An abstract proximal point algorithm (1711.09455v2)

Published 26 Nov 2017 in math.OC

Abstract: The proximal point algorithm is a widely used tool for solving a variety of convex optimization problems such as finding zeros of maximally monotone operators, fixed points of nonexpansive mappings, as well as minimizing convex functions. The algorithm works by applying successively so-called "resolvent" mappings associated to the original object that one aims to optimize. In this paper we abstract from the corresponding resolvents employed in these problems the natural notion of jointly firmly nonexpansive families of mappings. This leads to a streamlined method of proving weak convergence of this class of algorithms in the context of complete CAT(0) spaces (and hence also in Hilbert spaces). In addition, we consider the notion of uniform firm nonexpansivity in order to similarly provide a unified presentation of a case where the algorithm converges strongly. Methods which stem from proof mining, an applied subfield of logic, yield in this situation computable and low-complexity rates of convergence.

Summary

We haven't generated a summary for this paper yet.