Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
140 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Blowup of $H^1$ solutions for a class of the focusing inhomogeneous nonlinear Schrödinger equation (1711.09088v3)

Published 22 Nov 2017 in math.AP

Abstract: In this paper, we consider a class of the focusing inhomogeneous nonlinear Schr\"odinger equation [ i\partial_t u + \Delta u + |x|{-b} |u|\alpha u = 0, \quad u(0)=u_0 \in H1(\mathbb{R}d), ] with $0<b<\min{2,d}$ and $\alpha_\star\leq \alpha <\alpha\star$ where $\alpha_\star =\frac{4-2b}{d}$ and $\alpha\star=\frac{4-2b}{d-2}$ if $d\geq 3$ and $\alpha\star = \infty$ if $d=1,2$. In the mass-critical case $\alpha=\alpha_\star$, we prove that if $u_0$ has negative energy and satisfies either $xu_0 \in L2$ with $d\geq 1$ or $u_0$ is radial with $d\geq 2$, then the corresponding solution blows up in finite time. Moreover, when $d=1$, we prove that if the initial data (not necessarily radial) has negative energy, then the corresponding solution blows up in finite time. In the mass and energy intercritical case $\alpha_\star< \alpha <\alpha\star$, we prove the blowup below ground state for radial initial data with $d\geq 2$. This result extends the one of Farah in \cite{Farah} where the author proved blowup below ground state for data in the virial space $H1\cap L2(|x|2 dx)$ with $d\geq 1$.

Summary

We haven't generated a summary for this paper yet.