Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Fake News Detection in Social Networks via Crowd Signals (1711.09025v2)

Published 24 Nov 2017 in cs.SI

Abstract: Our work considers leveraging crowd signals for detecting fake news and is motivated by tools recently introduced by Facebook that enable users to flag fake news. By aggregating users' flags, our goal is to select a small subset of news every day, send them to an expert (e.g., via a third-party fact-checking organization), and stop the spread of news identified as fake by an expert. The main objective of our work is to minimize the spread of misinformation by stopping the propagation of fake news in the network. It is especially challenging to achieve this objective as it requires detecting fake news with high-confidence as quickly as possible. We show that in order to leverage users' flags efficiently, it is crucial to learn about users' flagging accuracy. We develop a novel algorithm, DETECTIVE, that performs Bayesian inference for detecting fake news and jointly learns about users' flagging accuracy over time. Our algorithm employs posterior sampling to actively trade off exploitation (selecting news that maximize the objective value at a given epoch) and exploration (selecting news that maximize the value of information towards learning about users' flagging accuracy). We demonstrate the effectiveness of our approach via extensive experiments and show the power of leveraging community signals for fake news detection.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (5)
  1. Sebastian Tschiatschek (43 papers)
  2. Adish Singla (96 papers)
  3. Manuel Gomez Rodriguez (30 papers)
  4. Arpit Merchant (6 papers)
  5. Andreas Krause (269 papers)
Citations (10)

Summary

We haven't generated a summary for this paper yet.