The analytic bootstrap equations of non-diagonal two-dimensional CFT (1711.08916v2)
Abstract: Under the assumption that degenerate fields exist, diagonal CFTs such as Liouville theory can be solved analytically using the conformal bootstrap method. Here we generalize this approach to non-diagonal CFTs, i.e. CFTs whose primary fields have nonzero conformal spins. Assuming generic values of the central charge, we find that the non-diagonal sector of the spectrum must be parametrized by two integer numbers. We then derive and solve the equations that determine how three- and four-point structure constants depend on these numbers. In order to test these results, we numerically check crossing symmetry of a class of four-point functions in a non-rational limit of D-series minimal models. The simplest four-point functions in this class were previously argued to describe connectivities of clusters in the critical Potts model.