Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Bias-Compensated Normalized Maximum Correntropy Criterion Algorithm for System Identification with Noisy Input (1711.08677v1)

Published 23 Nov 2017 in stat.ML and eess.SP

Abstract: This paper proposed a bias-compensated normalized maximum correntropy criterion (BCNMCC) algorithm charactered by its low steady-state misalignment for system identification with noisy input in an impulsive output noise environment. The normalized maximum correntropy criterion (NMCC) is derived from a correntropy based cost function, which is rather robust with respect to impulsive noises. To deal with the noisy input, we introduce a bias-compensated vector (BCV) to the NMCC algorithm, and then an unbiasedness criterion and some reasonable assumptions are used to compute the BCV. Taking advantage of the BCV, the bias caused by the input noise can be effectively suppressed. System identification simulation results demonstrate that the proposed BCNMCC algorithm can outperform other related algorithms with noisy input especially in an impulsive output noise environment.

Citations (33)

Summary

We haven't generated a summary for this paper yet.