Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
175 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Mixture-of-tastes Models for Representing Users with Diverse Interests (1711.08379v2)

Published 22 Nov 2017 in cs.IR

Abstract: Most existing recommendation approaches implicitly treat user tastes as unimodal, resulting in an average-of-tastes representations when multiple distinct interests are present. We show that appropriately modelling the multi-faceted nature of user tastes through a mixture-of-tastes model leads to large increases in recommendation quality. Our result holds both for deep sequence-based and traditional factorization models, and is robust to careful selection and tuning of baseline models. In sequence-based models, this improvement is achieved at a very modest cost in model complexity, making mixture-of-tastes models a straightforward improvement on existing baselines.

Citations (11)

Summary

We haven't generated a summary for this paper yet.