Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Fully Convolutional Neural Networks for Page Segmentation of Historical Document Images (1711.07695v2)

Published 21 Nov 2017 in cs.CV

Abstract: We propose a high-performance fully convolutional neural network (FCN) for historical document segmentation that is designed to process a single page in one step. The advantage of this model beside its speed is its ability to directly learn from raw pixels instead of using preprocessing steps e. g. feature computation or superpixel generation. We show that this network yields better results than existing methods on different public data sets. For evaluation of this model we introduce a novel metric that is independent of ambiguous ground truth called Foreground Pixel Accuracy (FgPA). This pixel based measure only counts foreground pixels in the binarized page, any background pixel is omitted. The major advantage of this metric is, that it enables researchers to compare different segmentation methods on their ability to successfully segment text or pictures and not on their ability to learn and possibly overfit the peculiarities of an ambiguous hand-made ground truth segmentation.

Citations (66)

Summary

We haven't generated a summary for this paper yet.