Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On the main conjecture of Iwasawa theory for certain non-cyclotomic $\mathbb{Z}_p$-extensions (1711.07554v3)

Published 20 Nov 2017 in math.NT

Abstract: Let $K=\mathbb{Q}(\sqrt{-q})$, where $q$ is any prime number congruent to $7$ modulo $8$, with ring of integers $\mathcal{O}$ and Hilbert class field $H$. Suppose $p\nmid [H:K]$ is a prime number which splits in $K$, say $p\mathcal{O}=\mathfrak{p}\mathfrak{p}*$. Let $H_\infty=HK_\infty$ where $K_\infty$ is the unique $\mathbb{Z}p$-extension of $K$ unramified outside $\mathfrak{p}$. Write $M(H\infty)$ for the maximal abelian $p$-extension of $H_\infty$ unramified outside the primes above $\mathfrak{p}$, and set $X(H_\infty)=\mathrm{Gal}(M(H_\infty)/H_\infty)$. In this paper, we establish the main conjecture of Iwasawa theory for the Iwasawa module $X(H_\infty)$. As a consequence, we have that if $X(H_\infty)=0$, the relevant $L$-values are $\mathfrak{p}$-adic units. In addition, the main conjecture for $X(H_\infty)$ has implications toward (a) the BSD Conjecture for a class of CM elliptic curves; (b) weak $\mathfrak{p}$-adic Leopoldt conjecture.

Summary

We haven't generated a summary for this paper yet.