Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Novel Convolutional Neural Network for Image Steganalysis with Shared Normalization (1711.07306v2)

Published 20 Nov 2017 in cs.MM

Abstract: Deep learning based image steganalysis has attracted increasing attentions in recent years. Several Convolutional Neural Network (CNN) models have been proposed and achieved state-of-the-art performances on detecting steganography. In this paper, we explore an important technique in deep learning, the batch normalization, for the task of image steganalysis. Different from natural image classification, steganalysis is to discriminate cover images and stego images which are the result of adding weak stego signals into covers. This characteristic makes a cover image is more statistically similar to its stego than other cover images, requiring steganalytic methods to use paired learning to extract effective features for image steganalysis. Our theoretical analysis shows that a CNN model with multiple normalization layers is hard to be generalized to new data in the test set when it is well trained with paired learning. To hand this difficulty, we propose a novel normalization technique called Shared Normalization (SN) in this paper. Unlike the batch normalization layer utilizing the mini-batch mean and standard deviation to normalize each input batch, SN shares same statistics for all training and test batches. Based on the proposed SN layer, we further propose a novel neural network model for image steganalysis. Extensive experiments demonstrate that the proposed network with SN layers is stable and can detect the state of the art steganography with better performances than previous methods.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Songtao Wu (10 papers)
  2. Sheng-hua Zhong (14 papers)
  3. Yan Liu (420 papers)
Citations (51)

Summary

We haven't generated a summary for this paper yet.