Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Eigenvalues of Sturm-Liouville Operators with Distributional Potentials (1711.07032v1)

Published 19 Nov 2017 in math.SP

Abstract: We introduce a novel approach for dealing with eigenvalue problems of Sturm-Liouville operators generated by the differential expression \begin{equation*} Ly=\frac{1}{r}\left( -(p\left[ y{\prime }+sy\right] ){\prime }+sp\left[ y{\prime }+sy\right] +qy\right) \end{equation*} which is based on norm resolvent convergence of classical Sturm-Liouville operators. This enables us to describe the continuous dependence of the $n$-th eigenvalue on the space of self-adjoint boundary conditions and the coefficients of the differential equation after giving the inequalities among the eigenvalues. Moreover, oscillation properties of the eigenfunctions are also characterized. In particular, our main results can be applied to solve a class of Sturm-Liouville problems with transmission conditions.

Summary

We haven't generated a summary for this paper yet.