Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

GA-PSO-Optimized Neural-Based Control Scheme for Adaptive Congestion Control to Improve Performance in Multimedia Applications (1711.06317v1)

Published 16 Nov 2017 in cs.NE, cs.AI, and cs.NI

Abstract: Active queue control aims to improve the overall communication network throughput while providing lower delay and small packet loss rate. The basic idea is to actively trigger packet dropping (or marking provided by explicit congestion notification (ECN)) before buffer overflow. In this paper, two artificial neural networks (ANN)-based control schemes are proposed for adaptive queue control in TCP communication networks. The structure of these controllers is optimized using genetic algorithm (GA) and the output weights of ANNs are optimized using particle swarm optimization (PSO) algorithm. The controllers are radial bias function (RBF)-based, but to improve the robustness of RBF controller, an error-integral term is added to RBF equation in the second scheme. Experimental results show that GA- PSO-optimized improved RBF (I-RBF) model controls network congestion effectively in terms of link utilization with a low packet loss rate and outperform Drop Tail, proportional-integral (PI), random exponential marking (REM), and adaptive random early detection (ARED) controllers.

Citations (2)

Summary

We haven't generated a summary for this paper yet.