Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
157 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Normal Approximation by Stein's Method under Sublinear Expectations (1711.05384v1)

Published 15 Nov 2017 in math.PR

Abstract: Peng (2008)(\cite{P08b}) proved the Central Limit Theorem under a sublinear expectation: \textit{Let $(X_i){i\ge 1}$ be a sequence of i.i.d random variables under a sublinear expectation $\hat{\mathbf{E}}$ with $\hat{\mathbf{E}}[X_1]=\hat{\mathbf{E}}[-X_1]=0$ and $\hat{\mathbf{E}}[|X_1|3]<\infty$. Setting $W_n:=\frac{X_1+\cdots+X_n}{\sqrt{n}}$, we have, for each bounded and Lipschitz function $\varphi$, [\lim{n\rightarrow\infty}\bigg|\hat{\mathbf{E}}[\varphi(W_n)]-\mathcal{N}G(\varphi)\bigg|=0,] where $\mathcal{N}_G$ is the $G$-normal distribution with $G(a)=\frac{1}{2}\hat{\mathbf{E}}[aX_12]$, $a\in \mathbb{R}$.} In this paper, we shall give an estimate of the rate of convergence of this CLT by Stein's method under sublinear expectations: \textit{Under the same conditions as above, there exists $\alpha\in(0,1)$ depending on $\underline{\sigma}$ and $\overline{\sigma}$, and a positive constant $C{\alpha, G}$ depending on $\alpha, \underline{\sigma}$ and $\overline{\sigma}$ such that [\sup_{|\varphi|{Lip}\le1}\bigg|\hat{\mathbf{E}}[\varphi(W_n)]-\mathcal{N}_G(\varphi)\bigg|\leq C{\alpha,G}\frac{\hat{\mathbf{E}}[|X_1|{2+\alpha}]}{n{\frac{\alpha}{2}}},] where $\overline{\sigma}2=\hat{\mathbf{E}}[X_12]$, $\underline{\sigma}2=-\hat{\mathbf{E}}[-X_12]>0$ and $\mathcal{N}_G$ is the $G$-normal distribution with [G(a)=\frac{1}{2}\hat{\mathbf{E}}[aX_12]=\frac{1}{2}(\overline{\sigma}2a+-\underline{\sigma}2a-), \ a\in \mathbb{R}.]}

Summary

We haven't generated a summary for this paper yet.