Isomorphism and Morita equivalence classes for crossed products of irrational rotation algebras by cyclic subgroups of $SL_2(\mathbb{Z})$ (1711.05055v2)
Abstract: Let $\theta, \theta'$ be irrational numbers and $A, B$ be matrices in $SL_2(\mathbb{Z})$ of infinite order. We compute the $K$-theory of the crossed product $\mathcal{A}{\theta}\rtimes_A \mathbb{Z}$ and show that $\mathcal{A}{\theta} \rtimes_A\mathbb{Z}$ and $\mathcal{A}{\theta'} \rtimes_B \mathbb{Z}$ are $*$-isomorphic if and only if $\theta = \pm\theta' \pmod{\mathbb{Z}}$ and $I-A{-1}$ is matrix equivalent to $I-B{-1}$. Combining this result and an explicit construction of equivariant bimodules, we show that $\mathcal{A}{\theta} \rtimes_A\mathbb{Z}$ and $\mathcal{A}{\theta'} \rtimes_B \mathbb{Z}$ are Morita equivalent if and only if $\theta$ and $\theta'$ are in the same $GL_2(\mathbb{Z})$ orbit and $I-A{-1}$ is matrix equivalent to $I-B{-1}$. Finally, we determine the Morita equivalence class of $\mathcal{A}{\theta} \rtimes F$ for any finite subgroup $F$ of $SL_2(\mathbb{Z})$.