Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Broadcast in radio networks: time vs. energy tradeoffs (1711.04149v2)

Published 11 Nov 2017 in cs.DC

Abstract: In wireless networks, consisting of battery-powered devices, energy is a costly resource and most of it is spent on transmitting and receiving messages. Broadcast is a problem where a message needs to be transmitted from one node to all other nodes of the network. We study algorithms that can work under limited energy measured as the maximum number of transmissions by a single station. The goal of the paper is to study tradeoffs between time and energy complexity of broadcast problem in multi-hop radio networks. We consider a model where the topology of the network is unknown and if two neighbors of a station are transmitting in the same discrete time slot, then the signals collide and the receiver cannot distinguish the collided signals from silence. We observe that existing, time efficient, algorithms are not optimized with respect to energy expenditure. We then propose and analyse two new randomized energy-efficient algorithms. Our first algorithm works in time $O((D+\varphi)\cdot n{1/\varphi}\cdot \varphi)$ with high probability and uses $O(\varphi)$ energy per station for any $\varphi \leq \log n/(2\log\log n)$ for any graph with $n$ nodes and diameter $D$. Our second algorithm works in time $O((D+\log n)\log n)$ with high probability and uses $O(\log n/\log\log n)$ energy. We prove that our algorithms are almost time-optimal for given energy limits for graphs with constant diameters by constructing lower bound on time of $\Omega(n{1/\varphi} \cdot \varphi)$. The lower bound shows also that any algorithm working in polylogaritmic time in $n$ for all graphs needs energy $\Omega(\log n/\log\log n)$.

Citations (9)

Summary

We haven't generated a summary for this paper yet.