Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Long-range Auto-correlations in Limit Order Book Markets: Inter- and Cross-event Analysis (1711.03534v1)

Published 9 Nov 2017 in q-fin.TR and q-fin.ST

Abstract: Long-range correlation in financial time series reflects the complex dynamics of the stock markets driven by algorithms and human decisions. Our analysis exploits ultra-high frequency order book data from NASDAQ Nordic over a period of three years to numerically estimate the power-law scaling exponents using detrended fluctuation analysis (DFA). We address inter-event durations (order to order, trade to trade, cancel to cancel) as well as cross-event durations (time from order submission to its trade or cancel). We find strong evidence of long-range correlation, which is consistent across different stocks and variables. However, given the crossovers in the DFA fluctuation functions, our results indicate that the long-range correlation in inter-event durations becomes stronger over a longer time scale, i.e., when moving from a range of hours to days and further to months. We also observe interesting associations between the scaling exponent and a number of economic variables, in particular, in the inter-trade time series.

Summary

We haven't generated a summary for this paper yet.