Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Active Learning of Points-To Specifications (1711.03239v3)

Published 9 Nov 2017 in cs.PL

Abstract: When analyzing programs, large libraries pose significant challenges to static points-to analysis. A popular solution is to have a human analyst provide points-to specifications that summarize relevant behaviors of library code, which can substantially improve precision and handle missing code such as native code. We propose ATLAS, a tool that automatically infers points-to specifications. ATLAS synthesizes unit tests that exercise the library code, and then infers points-to specifications based on observations from these executions. ATLAS automatically infers specifications for the Java standard library, and produces better results for a client static information flow analysis on a benchmark of 46 Android apps compared to using existing handwritten specifications.

Citations (24)

Summary

We haven't generated a summary for this paper yet.