Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On the $q$-Bentness of Boolean Functions (1711.02917v1)

Published 8 Nov 2017 in cs.CR

Abstract: For each non-constant $q$ in the set of $n$-variable Boolean functions, the {\em $q$-transform} of a Boolean function $f$ is related to the Hamming distances from $f$ to the functions obtainable from $q$ by nonsingular linear change of basis. Klapper conjectured that no Boolean function exists with its $q$-transform coefficients equal to $\pm 2{n/2}$ (such function is called $q$-bent). In our early work, we only gave partial results to confirm this conjecture for small $n$. Here we prove thoroughly that the conjecture is true by investigating the nonexistence of the partial difference sets in Abelian groups with special parameters. We also introduce a new family of functions called almost $q$-bent functions, which are close to $q$-bentness.

Citations (2)

Summary

We haven't generated a summary for this paper yet.