Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Semantics for Probabilistic Control-Flow Graphs (1711.02256v1)

Published 7 Nov 2017 in cs.PL

Abstract: This article develops a novel operational semantics for probabilistic control-flow graphs (pCFGs) of probabilistic imperative programs with random assignment and "observe" (or conditioning) statements. The semantics transforms probability distributions (on stores) as control moves from one node to another in pCFGs. We relate this semantics to a standard, expectation-transforming, denotational semantics of structured probabilistic imperative programs, by translating structured programs into (unstructured) pCFGs, and proving adequacy of the translation. This shows that the operational semantics can be used without loss of information, and is faithful to the "intended" semantics and hence can be used to reason about, for example, the correctness of transformations (as we do in a companion article).

Citations (1)

Summary

We haven't generated a summary for this paper yet.