Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
121 tokens/sec
GPT-4o
9 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Unsupervised Transformation Learning via Convex Relaxations (1711.02226v1)

Published 6 Nov 2017 in stat.ML

Abstract: Our goal is to extract meaningful transformations from raw images, such as varying the thickness of lines in handwriting or the lighting in a portrait. We propose an unsupervised approach to learn such transformations by attempting to reconstruct an image from a linear combination of transformations of its nearest neighbors. On handwritten digits and celebrity portraits, we show that even with linear transformations, our method generates visually high-quality modified images. Moreover, since our method is semiparametric and does not model the data distribution, the learned transformations extrapolate off the training data and can be applied to new types of images.

Citations (12)

Summary

We haven't generated a summary for this paper yet.