Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

An Iterative Scheme for Leverage-based Approximate Aggregation (1711.01960v4)

Published 6 Nov 2017 in cs.DB

Abstract: The current data explosion poses great challenges to the approximate aggregation with an efficiency and accuracy. To address this problem, we propose a novel approach to calculate the aggregation answers with a high accuracy using only a small portion of the data. We introduce leverages to reflect individual differences in the samples from a statistical perspective. Two kinds of estimators, the leverage-based estimator, and the sketch estimator (a "rough picture" of the aggregation answer), are in constraint relations and iteratively improved according to the actual conditions until their difference is below a threshold. Due to the iteration mechanism and the leverages, our approach achieves a high accuracy. Moreover, some features, such as not requiring recording the sampled data and easy to extend to various execution modes (e.g., the online mode), make our approach well suited to deal with big data. Experiments show that our approach has an extraordinary performance, and when compared with the uniform sampling, our approach can achieve high-quality answers with only 1/3 of the same sample size.

Citations (5)

Summary

We haven't generated a summary for this paper yet.