Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
157 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Strong property (T) for higher rank lattices (1711.01900v4)

Published 6 Nov 2017 in math.FA, math.GR, and math.OA

Abstract: We prove that every lattice in a product of higher rank simple Lie groups or higher rank simple algebraic groups over local fields has Vincent Lafforgue's strong property (T). Over non-archimedean local fields, we also prove that they have strong Banach proerty (T) with respect to all Banach spaces with nontrivial type, whereas in general we obtain such a result with additional hypotheses on the Banach spaces. The novelty is that we deal with non-cocompact lattices, such as $\mathrm{SL}_n(\mathbf{Z})$ for $n \geq 3$. To do so, we introduce a stronger form of strong property (T) which allows us to deal with more general objects than group representations on Banach spaces that we call two-step representations, namely families indexed by a group of operators between different Banach spaces that we can compose only once. We prove that higher rank groups have this property and that this property passes to undistorted lattices.

Summary

We haven't generated a summary for this paper yet.