Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Conditional Gradient Method for Stochastic Submodular Maximization: Closing the Gap (1711.01660v1)

Published 5 Nov 2017 in math.OC and cs.LG

Abstract: In this paper, we study the problem of \textit{constrained} and \textit{stochastic} continuous submodular maximization. Even though the objective function is not concave (nor convex) and is defined in terms of an expectation, we develop a variant of the conditional gradient method, called \alg, which achieves a \textit{tight} approximation guarantee. More precisely, for a monotone and continuous DR-submodular function and subject to a \textit{general} convex body constraint, we prove that \alg achieves a $[(1-1/e)\text{OPT} -\eps]$ guarantee (in expectation) with $\mathcal{O}{(1/\eps3)}$ stochastic gradient computations. This guarantee matches the known hardness results and closes the gap between deterministic and stochastic continuous submodular maximization. By using stochastic continuous optimization as an interface, we also provide the first $(1-1/e)$ tight approximation guarantee for maximizing a \textit{monotone but stochastic} submodular \textit{set} function subject to a general matroid constraint.

Citations (66)

Summary

We haven't generated a summary for this paper yet.