Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Stochastic Greedy Algorithms For Multiple Measurement Vectors (1711.01521v2)

Published 5 Nov 2017 in math.OC, cs.DS, cs.NA, and math.NA

Abstract: Sparse representation of a single measurement vector (SMV) has been explored in a variety of compressive sensing applications. Recently, SMV models have been extended to solve multiple measurement vectors (MMV) problems, where the underlying signal is assumed to have joint sparse structures. To circumvent the NP-hardness of the $\ell_0$ minimization problem, many deterministic MMV algorithms solve the convex relaxed models with limited efficiency. In this paper, we develop stochastic greedy algorithms for solving the joint sparse MMV reconstruction problem. In particular, we propose the MMV Stochastic Iterative Hard Thresholding (MStoIHT) and MMV Stochastic Gradient Matching Pursuit (MStoGradMP) algorithms, and we also utilize the mini-batching technique to further improve their performance. Convergence analysis indicates that the proposed algorithms are able to converge faster than their SMV counterparts, i.e., concatenated StoIHT and StoGradMP, under certain conditions. Numerical experiments have illustrated the superior effectiveness of the proposed algorithms over their SMV counterparts.

Citations (11)

Summary

We haven't generated a summary for this paper yet.