Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Structured Variational Inference for Coupled Gaussian Processes (1711.01131v2)

Published 3 Nov 2017 in stat.ML and cs.LG

Abstract: Sparse variational approximations allow for principled and scalable inference in Gaussian Process (GP) models. In settings where several GPs are part of the generative model, theses GPs are a posteriori coupled. For many applications such as regression where predictive accuracy is the quantity of interest, this coupling is not crucial. Howewer if one is interested in posterior uncertainty, it cannot be ignored. A key element of variational inference schemes is the choice of the approximate posterior parameterization. When the number of latent variables is large, mean field (MF) methods provide fast and accurate posterior means while more structured posterior lead to inference algorithm of greater computational complexity. Here, we extend previous sparse GP approximations and propose a novel parameterization of variational posteriors in the multi-GP setting allowing for fast and scalable inference capturing posterior dependencies.

Citations (2)

Summary

We haven't generated a summary for this paper yet.