Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Transmission Network Reduction Method using Nonlinear Optimization (1711.01079v2)

Published 3 Nov 2017 in cs.SY

Abstract: This paper presents a new method to determine the susceptances of a reduced transmission network representation by using nonlinear optimization. We use Power Transfer Distribution Factors (PTDFs) to convert the original grid into a reduced version, from which we determine the susceptances. From our case studies we find that considering a reduced injection-independent evaluated PTDF matrix is the best approximation and is by far better than an injection-dependent evaluated PTDF matrix over a given set of arbitrarily-chosen power injection scenarios. We also compare our nonlinear approach with existing methods from literature in terms of the approximation error and computation time. On average, we find that our approach reduces the mean error of the power flow deviations between the original power system and its reduced version, while achieving higher but reasonable computation times.

Citations (13)

Summary

We haven't generated a summary for this paper yet.