Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On the Complexity of Random Quantum Computations and the Jones Polynomial (1711.00686v1)

Published 2 Nov 2017 in quant-ph and cs.CC

Abstract: There is a natural relationship between Jones polynomials and quantum computation. We use this relationship to show that the complexity of evaluating relative-error approximations of Jones polynomials can be used to bound the classical complexity of approximately simulating random quantum computations. We prove that random quantum computations cannot be classically simulated up to a constant total variation distance, under the assumption that (1) the Polynomial Hierarchy does not collapse and (2) the average-case complexity of relative-error approximations of the Jones polynomial matches the worst-case complexity over a constant fraction of random links. Our results provide a straightforward relationship between the approximation of Jones polynomials and the complexity of random quantum computations.

Citations (9)

Summary

We haven't generated a summary for this paper yet.