Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Efficient Constrained Tensor Factorization by Alternating Optimization with Primal-Dual Splitting (1711.00603v1)

Published 2 Nov 2017 in cs.NA and math.NA

Abstract: Tensor factorization with hard and/or soft constraints has played an important role in signal processing and data analysis. However, existing algorithms for constrained tensor factorization have two drawbacks: (i) they require matrix-inversion; and (ii) they cannot (or at least is very difficult to) handle structured regularizations. We propose a new tensor factorization algorithm that circumvents these drawbacks. The proposed method is built upon alternating optimization, and each subproblem is solved by a primal-dual splitting algorithm, yielding an efficient and flexible algorithmic framework to constrained tensor factorization. The advantages of the proposed method over a state-of-the-art constrained tensor factorization algorithm, called AO-ADMM, are demonstrated on regularized nonnegative tensor factorization.

Citations (4)

Summary

We haven't generated a summary for this paper yet.