Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Scheduling Monotone Moldable Jobs in Linear Time (1711.00103v2)

Published 31 Oct 2017 in cs.DS

Abstract: A moldable job is a job that can be executed on an arbitrary number of processors, and whose processing time depends on the number of processors allotted to it. A moldable job is monotone if its work doesn't decrease for an increasing number of allotted processors. We consider the problem of scheduling monotone moldable jobs to minimize the makespan. We argue that for certain compact input encodings a polynomial algorithm has a running time polynomial in n and log(m), where n is the number of jobs and m is the number of machines. We describe how monotony of jobs can be used to counteract the increased problem complexity that arises from compact encodings, and give tight bounds on the approximability of the problem with compact encoding: it is NP-hard to solve optimally, but admits a PTAS. The main focus of this work are efficient approximation algorithms. We describe different techniques to exploit the monotony of the jobs for better running times, and present a (3/2+{\epsilon})-approximate algorithm whose running time is polynomial in log(m) and 1/{\epsilon}, and only linear in the number n of jobs.

Citations (26)

Summary

We haven't generated a summary for this paper yet.