Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Hit Song Prediction for Pop Music by Siamese CNN with Ranking Loss (1710.10814v1)

Published 30 Oct 2017 in stat.ML and cs.IR

Abstract: A model for hit song prediction can be used in the pop music industry to identify emerging trends and potential artists or songs before they are marketed to the public. While most previous work formulates hit song prediction as a regression or classification problem, we present in this paper a convolutional neural network (CNN) model that treats it as a ranking problem. Specifically, we use a commercial dataset with daily play-counts to train a multi-objective Siamese CNN model with Euclidean loss and pairwise ranking loss to learn from audio the relative ranking relations among songs. Besides, we devise a number of pair sampling methods according to some empirical observation of the data. Our experiment shows that the proposed model with a sampling method called A/B sampling leads to much higher accuracy in hit song prediction than the baseline regression model. Moreover, we can further improve the accuracy by using a neural attention mechanism to extract the highlights of songs and by using a separate CNN model to offer high-level features of songs.

Citations (19)

Summary

We haven't generated a summary for this paper yet.