Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Deep Spatial Regression Model for Image Crowd Counting (1710.09757v1)

Published 26 Oct 2017 in cs.CV

Abstract: Computer vision techniques have been used to produce accurate and generic crowd count estimators in recent years. Due to severe occlusions, appearance variations, perspective distortions and illumination conditions, crowd counting is a very challenging task. To this end, we propose a deep spatial regression model(DSRM) for counting the number of individuals present in a still image with arbitrary perspective and arbitrary resolution. Our proposed model is based on Convolutional Neural Network (CNN) and long short term memory (LSTM). First, we put the images into a pretrained CNN to extract a set of high-level features. Then the features in adjacent regions are used to regress the local counts with a LSTM structure which takes the spatial information into consideration. The final global count is obtained by a sum of the local patches. We apply our framework on several challenging crowd counting datasets, and the experiment results illustrate that our method on the crowd counting and density estimation problem outperforms state-of-the-art methods in terms of reliability and effectiveness.

Citations (15)

Summary

We haven't generated a summary for this paper yet.