Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
140 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Relative Transfer Function Inverse Regression from Low Dimensional Manifold (1710.09091v1)

Published 25 Oct 2017 in cs.SD and eess.AS

Abstract: In room acoustic environments, the Relative Transfer Functions (RTFs) are controlled by few underlying modes of variability. Accordingly, they are confined to a low-dimensional manifold. In this letter, we investigate a RTF inverse regression problem, the task of which is to generate the high-dimensional responses from their low-dimensional representations. The problem is addressed from a pure data-driven perspective and a supervised Deep Neural Network (DNN) model is applied to learn a mapping from the source-receiver poses (positions and orientations) to the frequency domain RTF vectors. The experiments show promising results: the model achieves lower prediction error of the RTF than the free field assumption. However, it fails to compete with the linear interpolation technique in small sampling distances.

Citations (1)

Summary

We haven't generated a summary for this paper yet.