Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
99 tokens/sec
Gemini 2.5 Pro Premium
56 tokens/sec
GPT-5 Medium
26 tokens/sec
GPT-5 High Premium
20 tokens/sec
GPT-4o
106 tokens/sec
DeepSeek R1 via Azure Premium
99 tokens/sec
GPT OSS 120B via Groq Premium
507 tokens/sec
Kimi K2 via Groq Premium
213 tokens/sec
2000 character limit reached

A nonlinear discrete-velocity relaxation model for traffic flow (1710.06262v1)

Published 17 Oct 2017 in math.AP and math.NA

Abstract: We derive a nonlinear 2-equation discrete-velocity model for traffic flow from a continuous kinetic model. The model converges to scalar Lighthill-Whitham type equations in the relaxation limit for all ranges of traffic data. Moreover, the model has an invariant domain appropriate for traffic flow modeling. It shows some similarities with the Aw-Rascle traffic model. However, the new model is simpler and yields, in case of a concave fundamental diagram, an example for a totally linear degenerate hyperbolic relaxation model. We discuss the details of the hyperbolic main part and consider boundary conditions for the limit equations derived from the relaxation model. Moreover, we investigate the cluster dynamics of the model for vanishing braking distance and consider a relaxation scheme build on the kinetic discrete velocity model. Finally, numerical results for various situations are presented, illustrating the analytical results.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Authors (2)