Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

An improved Belief Propagation algorithm finds many Bethe states in the random field Ising model on random graphs (1710.05396v2)

Published 15 Oct 2017 in cond-mat.dis-nn, cond-mat.stat-mech, and cs.DM

Abstract: We first present an empirical study of the Belief Propagation (BP) algorithm, when run on the random field Ising model defined on random regular graphs in the zero temperature limit. We introduce the notion of maximal solutions for the BP equations and we use them to fix a fraction of spins in their ground state configuration. At the phase transition point the fraction of unconstrained spins percolates and their number diverges with the system size. This in turn makes the associated optimization problem highly non trivial in the critical region. Using the bounds on the BP messages provided by the maximal solutions we design a new and very easy to implement BP scheme which is able to output a large number of stable fixed points. On one side this new algorithm is able to provide the minimum energy configuration with high probability in a competitive time. On the other side we found that the number of fixed points of the BP algorithm grows with the system size in the critical region. This unexpected feature poses new relevant questions on the physics of this class of models.

Citations (5)

Summary

We haven't generated a summary for this paper yet.