Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Network Model Selection Using Task-Focused Minimum Description Length (1710.05207v2)

Published 14 Oct 2017 in cs.AI

Abstract: Networks are fundamental models for data used in practically every application domain. In most instances, several implicit or explicit choices about the network definition impact the translation of underlying data to a network representation, and the subsequent question(s) about the underlying system being represented. Users of downstream network data may not even be aware of these choices or their impacts. We propose a task-focused network model selection methodology which addresses several key challenges. Our approach constructs network models from underlying data and uses minimum description length (MDL) criteria for selection. Our methodology measures efficiency, a general and comparable measure of the network's performance of a local (i.e. node-level) predictive task of interest. Selection on efficiency favors parsimonious (e.g. sparse) models to avoid overfitting and can be applied across arbitrary tasks and representations. We show stability, sensitivity, and significance testing in our methodology.

Citations (4)

Summary

We haven't generated a summary for this paper yet.