Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Attacks on the Search-RLWE problem with small errors (1710.03739v1)

Published 10 Oct 2017 in cs.CR

Abstract: The Ring Learning-With-Errors (RLWE) problem shows great promise for post-quantum cryptography and homomorphic encryption. We describe a new attack on the non-dual search RLWE problem with small error widths, using ring homomorphisms to finite fields and the chi-squared statistical test. In particular, we identify a "subfield vulnerability" (Section 5.2) and give a new attack which finds this vulnerability by mapping to a finite field extension and detecting non-uniformity with respect to the number of elements in the subfield. We use this attack to give examples of vulnerable RLWE instances in Galois number fields. We also extend the well-known search-to-decision reduction result to Galois fields with any unramified prime modulus q, regardless of the residue degree f of q, and we use this in our attacks. The time complexity of our attack is O(nq2f), where n is the degree of K and f is the residue degree of q in K. We also show an attack on the non-dual (resp. dual) RLWE problem with narrow error distributions in prime cyclotomic rings when the modulus is a ramified prime (resp. any integer). We demonstrate the attacks in practice by finding many vulnerable instances and successfully attacking them. We include the code for all attacks.

Citations (25)

Summary

We haven't generated a summary for this paper yet.