Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Representations and evaluation strategies for feasibly approximable functions (1710.03702v3)

Published 10 Oct 2017 in cs.CC and cs.LO

Abstract: A famous result due to Ko and Friedman (1982) asserts that the problems of integration and maximisation of a univariate real function are computationally hard in a well-defined sense. Yet, both functionals are routinely computed at great speed in practice. We aim to resolve this apparent paradox by studying classes of functions which can be feasibly integrated and maximised, together with representations for these classes of functions which encode the information which is necessary to uniformly compute integral and maximum in polynomial time. The theoretical framework for this is the second-order complexity theory for operators in analysis which was introduced by Kawamura and Cook (2012). The representations we study are based on rigorous approximation by polynomials, piecewise polynomials, and rational functions. We compare these representations with respect to polytime reducibility as well as with respect to their ability to quickly evaluate symbolic expressions in a given language. We show that the representation based on rigorous approximation by piecewise polynomials is polytime equivalent to the representation based on rigorous approximation by rational functions. With this representation, all terms in a certain language, which is expressive enough to contain the maximum and integral of most functions of practical interest, can be evaluated in polynomial time. By contrast, both the representation based on polynomial approximation and the standard representation based on function evaluation, which implicitly underlies the Ko-Friedman result, require exponential time to evaluate certain terms in this language. We confirm our theoretical results by an implementation in Haskell, which provides some evidence that second-order polynomial time computability is similarly closely tied with practical feasibility as its first-order counterpart.

Citations (3)

Summary

We haven't generated a summary for this paper yet.