Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Quantized Spectral Compressed Sensing: Cramer-Rao Bounds and Recovery Algorithms (1710.03654v3)

Published 10 Oct 2017 in eess.SP, cs.IT, and math.IT

Abstract: Efficient estimation of wideband spectrum is of great importance for applications such as cognitive radio. Recently, sub-Nyquist sampling schemes based on compressed sensing have been proposed to greatly reduce the sampling rate. However, the important issue of quantization has not been fully addressed, particularly for high-resolution spectrum and parameter estimation. In this paper, we aim to recover spectrally-sparse signals and the corresponding parameters, such as frequency and amplitudes, from heavy quantizations of their noisy complex-valued random linear measurements, e.g. only the quadrant information. We first characterize the Cramer-Rao bound under Gaussian noise, which highlights the trade-off between sample complexity and bit depth under different signal-to-noise ratios for a fixed budget of bits. Next, we propose a new algorithm based on atomic norm soft thresholding for signal recovery, which is equivalent to proximal mapping of properly designed surrogate signals with respect to the atomic norm that motivates spectral sparsity. The proposed algorithm can be applied to both the single measurement vector case, as well as the multiple measurement vector case. It is shown that under the Gaussian measurement model, the spectral signals can be reconstructed accurately with high probability, as soon as the number of quantized measurements exceeds the order of K log n, where K is the level of spectral sparsity and $n$ is the signal dimension. Finally, numerical simulations are provided to validate the proposed approaches.

Citations (36)

Summary

We haven't generated a summary for this paper yet.